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 Massive open online courses (MOOCs) have become 

increasingly popular and offered students around the world the 

opportunity to take online courses from prestigious universities.
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Prerequisite Relation Learning for Concepts in MOOCs

 A prerequisite is usually a concept or requirement before one can 

proceed to a following one. 

 The prerequisite relation exists as a natural dependency among 

concepts in cognitive processes when people learn, organize, 

apply, and generate knowledge (Laurence and Margolis, 1999).
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Partha Pratim Talukdar and William W Cohen. Crowdsourced comprehension: predicting prerequisite
structure in wikipedia. 2012. 
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Prerequisite Relation Learning for Concepts in MOOCs

 In the era of MOOCs, it is becoming infeasible to manually organize the knowledge 

structures with thousands of online courses from different providers.

 The students from different background can easily explore the knowledge space and 

better design their personalized learning schedule. 

Motivation 1. Manually building a concept map in MOOCs is infeasible

Motivation 2. To help improve the learning experience of students
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Question: What should she get started if she wants to learn the concept of “conditional 

random field”? 
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Problem Definition
 Input

 MOOC Corpus    , 𝑤ℎ𝑒𝑟𝑒 𝐶𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑐𝑜𝑢𝑟𝑠𝑒

Course , where  𝑣𝑖 is the i-th video of course 𝐶

Video , where 𝑠𝑖 is the i-th sentence of video 𝑣

 Course Concepts  , where 𝐾𝑖 is the set of course concepts in 𝐶𝑖

 Output

 Prerequisite Function    

The function 𝑃𝐹 predicts whether concept 𝑎 is a prerequisite concept of 𝑏
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Features Overview

Features

Semantic Features Semantic Relatedness

Contextual Features

Video Reference Distance

Sentence Reference Distance

Wikipedia Reference Distance

Structural Features

Average Position Distance

Distributional Asymmetry Distance

Complexity Level Distance
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Semantic Features

Features Semantic Features Semantic Relatedness

• Semantic Relatedness plays an important role in prerequisite relations between concepts. 

• If two concepts have very different semantic meanings, it is unlikely that they have prerequisite 

relations. 

Matrix Anthropology

Gradient Descent Neural Networks
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Semantic Features
 Concept Embeddings

 Wikipedia corpus

 Procedure of Concept Embeddings

• 1. Entity Annotation: We label all the entities in the Wikipedia corpus based on the hyperlinks in 

Wiki, and get a new corpus 𝑂𝐸′ and a wiki entity set 𝐸𝑆.

Where 𝑥𝑖 corresponds to a word 𝑤 ∈ 𝑂𝐸 or an entity 𝑒 ∈ 𝐸𝑆

• 2. Word Embeddings: We apply the skip-gram model to train word embeddings on 𝑂𝐸′.

• 3. Concept Representation: After training, we can obtain the vector for each concept in 𝐸𝑆. For 

any non-wiki concept, we obtain its vector via the vector addition of its individual word vectors.
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Contextual Features

Features Contextual Features Video Reference Distance

• If in videos where concept A is frequently talked about, the teacher also needs to refer to concept 

B for a lot but not vice versa, then B would more likely be a prerequisite of A. 

Back Propagation

Gradient Descent

Mention

Gradient Descent

Back Propagation

Mention
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Contextual Features
 Video Reference Distance 

 Video Set of the MOOC corpus

 Video Reference Weight  from A to B

Where

• 𝑓(𝐴, 𝑣): the term frequency of concept 𝐴 in video 𝑣

• 𝑟 𝑣, 𝐵 ∈ {0,1}: whether concept 𝐵 appears in video 𝑣

• It indicates how B is referred by A’s videos

 Video Reference Distance  of  (A,B)
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Contextual Features
 Generalized Video Reference Distance 

 Generalized Video Reference Weight  from A to B

Where

• {𝑎1, ⋯ , 𝑎𝐾}: the top-K most similar concepts of 𝐴, where 𝑎1, ⋯ , 𝑎𝐾 ∈ 𝑇

• 𝑤 𝑎𝑖 , 𝐴 : the similarity between 𝑎𝑖 and 𝐴

• It indicates how B is referred by A’s related concepts in their videos

 Generalized Video Reference Distance  of  (A,B)
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Contextual Features

Features

Semantic Features Semantic Relatedness

Contextual Features

Video Reference Distance

Sentence Reference Distance

Wikipedia Reference Distance

Structural Features

Average Position Distance

Distributional Asymmetry Distance

Complexity Level Distance
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Structural Features

Features Structural Features

Average Position Distance

Complexity Level Distance

Distributional Asymmetry Distance

• In teaching videos, knowledge concepts are usually introduced based on their learning 

dependencies, so the structure of MOOC courses also significantly contribute to 

prerequisite relation inference in MOOCs. 

• We investigate 3 different structural information, including appearing positions of 

concepts, learning dependencies of videos and complexity levels of concepts. 
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Structural Features
 Average Position Distance 

 Assumption

• In a course, for a specific concept, its prerequisite concepts tend to be introduced 

before this concept and its subsequent concepts tend to be introduced after this 

concept.

 TOC Distance of  (A,B)

Where

• 𝐶(𝐴, 𝐵): the set of courses in which 𝐴 and 𝐵 both appear

• AP(A,C) = the average index of videos containing concept A in course C 

(The average position of a concept A in course C)
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Structural Features
 Distributional Asymmetry Distance

 Assumption

• The learning dependency of course videos is also helpful to infer learning 

dependency of course concepts. 

• Specifically, if video 𝑉𝑎 is a precursor video of 𝑉𝑏, and 𝑎 is a prerequisite 

concept of 𝑏, then it is likely that f(b, 𝑉𝑎) < f(a, 𝑉𝑏)

 Example

Back PropagationGradient Descent

Mention

Mention

A B
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Structural Features
 Distributional Asymmetry Distance

 All possible video pairs of that have sequential relation

 Distributional Asymmetry Distance
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Structural Features
 Complexity Level Distance 

 Assumption

• If two related concepts have prerequisite relationship, they may have a difference 

in their complexity level. It means that one concept is more basic while another 

one is more advanced. 

 Example

Data Set

Training Set Test Set
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Structural Features
 Complexity Level Distance 

 Assumption

• For a specific concept, if it covers more videos in the course or it survives longer time in a 

course, then it is more likely to be a general concept rather than a specific concept.

 Average video coverage of A

 Average survival time of A

 Complexity Level Distance of (A,B)
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Experimental Datasets

Collecting 
Course Videos

• “Machine Learning” (ML), “Data Structure and 
Algorithms” (DSA), and “Calculus” (CAL) from Coursera

Course 
Concepts 

Annotation

• Extract candidate concepts from documents of video 
subtitles Label the candidates as “course concept” or 
“not course concept”

Prerequisite 
Relation 

Annotation

• We manually annotate the prerequisite relations among 
the labeled course concepts.
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Experimental Datasets

 Dataset Statistics

 3 novel datasets extracted from Coursera

• ML: 5 Machine Learning courses

• DSA: 8 Data Structure and Algorithms courses

• CAL: 7 Calculus courses
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Evaluation Results
 Models

 Naïve Bayes (NB)

 Logistic Regression (LR)

 SVM with linear kernel (SVM)

 Random Forest (RF)

 Metrics

 Precision (P)

 Recall (R)

 F1-Score (F1)

 5-Fold Cross Validation
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Comparison with Baselines

 Comparison Methods  

 Hyponym Pattern Method (HPM)

• This method simply treat the concept pairs with IS-A relations as prerequisite concept pairs. 

 Reference Distance (RD)

• This method was proposed by Liang et al. (2015). However, this method is only applicable to 

Wikipedia concepts.

 Supervised Relationship Identification (SRI)

• Wang et al. (2016) has employed several features to infer prerequisite relations of Wikipedia 

concepts in textbooks, including 3 Textbook features and 6 Wikipedia features.

• (1) T-SRI: only textbook features are used to train the classifier.

• (2) F-SRI: the original version, all features are used. 
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Comparison with Baselines
 W-ML, W-DSA, W-CAL are subsets with

Wikipedia Concepts

 HPM achieves relatively high precision

but low recall.

 T-SRI only considers relatively simple

features

 Incorporating Wikipedia-based features

achieves certain promotion in performance
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Comparison with Baselines
 Setting

 Each time, one feature or 

one group of features is removed

 We record the decrease of F1-score

for each setting

 Conclusion

 All the proposed features are useful

 Complexity Level Distance is most important

 Semantic Relatedness is least important
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